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We study the three-dimensional evolution of a nominally axisymmetric jet subject 
to helical perturbations. Our approach is a computational one, employing an inviscid 
vortex filament technique to gain insight into the vorticity dynamics of jets 
dominated by helical vortices. For the case of a helical perturbation only, the 
streamwise vorticity forming in the braid is of the same sign everywhere, with the 
vortex helix representing streamwise vorticity of opposite sign. Owing to the helical 
symmetry, concentrated structures do not form in the braid. By introducing an 
additional periodic perturbation in the azimuthal direction, the helical symmetry is 
broken and we observe the emergence of concentrated streamwise braid vortices all 
of the same sign, in contrast to the counter-rotating braid vortices of ring-dominated 
jets. A Kelvin-Helmholtz-like instability of the braid vorticity layer plays a 
significant role in their generation. We furthermore find that the initial evolution of 
the braid vorticity is strongly dependent upon the ratio between the helical and 
azimuthal perturbation amplitudes. Smaller azimuthal perturbation amplitudes 
slow down the concentration process of the braid vorticity. However, we find that 
the longtime strength of the streamwise braid vortices should not depend on the 
amplitudes of the streamwise and azimuthal perturbation waves, but rather on their 
wavenumbers. The evolution of the helical vortex varies with the ratio between jet 
radius R and shear-layer momentum thickness 8. While for a jet with R/8  = 22.6 and 
azimuthal wavenumber five, the emerging helix continuously rotates and thereby 
avoids instability, we observe in a jet with RIB = 11.3 the reduction of this rotation 
and the near exponential growth of waves on the helical vortex, characteristic of 
vortex helix instability. 

1. Introduction 
Experimental as well as theoretical work indicates the importance of both 

axisymmetric and helical waves in the transition process of round jets. Part  1 of the 
present numerical study (Martin & Meiburg 1 9 9 1 ~ )  was hence devoted to an 
investigation of three-dimensionally evolving axisymmetric modes in a jet. The 
dynamics were assumed to be dominated by inviscid mechanisms, and consequently 
we employed a vortex dynamics approach that discretized the nominally axi- 
symmetric shear layer into vortex filaments. Under a single axisymmetric 
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perturbation, we observed the roll-up of the shear layer into ring-like vortices which 
produced a strong strain field within the connecting layer of braid vorticity. When 
we imposed an additional azimuthal perturbation, both the ring and braid regions 
developed fully three-dimensional, unstable configurations. Counter rotating 
streamwise vorticity formed in the braid regions which in turn augmented the 
developing three-dimensionality of the ring-like vortices. The streamwise braid 
vorticity was observed to  collapse into concentrated vortex tubes. Vortex rings, as 
they exist on their own, are unstable configurations (Widnall, Bliss & Tsai 1974). 
Depending on the ratio of jet radius to momentum thickness, we found a similar 
instability to  occur in the ring-like vortices of the jet. The additional three- 
dimensionality in the vortex structure of the jet under axisymmetric perturbation 
led to  a significant increase in the growth rate of its momentum thickness, while also 
having a strong effect on entrainment and mixing. As a study of axisymmetric jets 
cannot be complete without consideration of the helical modes, we will, in the 
following, focus on the evolution of jets perturbed by helical waves. 

In their study of the stability of inviscid axisymmetric jets to three-dimensional 
disturbances, Batchelor & Gill (1962) demonstrated the importance of non- 
axisymmetric modes. Their analysis combined the inviscid linearized disturbance 
equations to give a necessary condition for the existence of unstable solutions. The 
condition states that  for unstable solutions to exist, the function 

must achieve a maximum somewhere within the fluid, where U(r) is the velocity 
profile, and m and a are the azimuthal and streamwise wavenumber of the 
disturbance. While the axisymmetric disturbance satisfied the necessary condition 
for instability only for velocity profiles whose variation with radius r was large, non- 
axisymmetric disturbances satisfied the condition for instability regardless of the 
profile chosen. In  particular, Batchelor & Gill proved for the bell-shaped velocity 
profile 

1 
U(r )  = ~ 

(1+r2) '  

which models the downstream development of an axisymmetric jet, that only the 
disturbance with azimuthal wavenumber 1 is amplified. From this, it can be 
concluded that further downstream helical perturbations in a jet should become 
more amplified than axisymmetric perturbations. Michalke (1971) extended 
Batchelor & Gill's work by including several parameters of the flow in his analysis for 
profiles of hyperbolic tangent form. Although the profiles were also non-diverging, 
inclusion of the momentum thickness as a parameter illustrated the streamwise 
dependence of the jet's stability. The maximally amplified mode varied with the 
ratio of jet radius to momentum thickness, although for low-frequency disturbances, 
modes with azimuthal wavenumber of 1 were consistently more unstable than their 
axisymmetric counterparts. As the shear layer spreads, a continuing decrease in the 
ratio of jet radius to momentum thickness accompanies the downstream development 
of a jet. Mattingly & Chang (1974), Chan (1976), Lopez & Kurzweg (1977), Plaschko 
(1979), and Strange & Crighton (1983) further studied the stability characteristics of 
helical waves and their region of amplification for a variety of jet profiles. By writing 
the linearized disturbance equation in terms of the ratio of jet radius R to momentum 
thickness 8, Cohen & Wygnanski ( 1 9 8 7 ~ )  demonstrated the significance of this ratio 
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for waves with azimuthal dependence. For large values of the ratio RIB, the linear 
disturbance equation becomes nearly independent of the azimuthal wavenumber of 
disturbance. Hence, for large values of the ratio RIB maximally amplified 
wavelengths and growth rates are almost identical for helical and axisymmetric 
disturbances. Using a quasi-parallel velocity profile, Cohen & Wygnanski demon- 
strated amplification of disturbances with azimuthal wavenumbers 0-6 in jets 
with values of R/B as low as 13.1. However, for these values of RIB, the axisymmetric 
disturbance remains the maximally amplified mode. As the ratio of jet radius to 
momentum thickness further decreases, the remaining amplified disturbance of 
azimuthal wavenumber 1 has a growth rate which diminishes, but then finally 
overtakes that of the axisymmetric mode for all frequencies, in agreement with the 
findings of Batchelor & Gill. Our earlier numerical study on axisymmetric 
perturbations furthermore indicates the importance of the quantity RIB not only for 
the linear stability, but also for the nonlinear stability and evolution of the jet as 
well. 

Experimental evidence for the existence of amplified helical modes appears in 
numerous examinations of jet flow (Moore 1977; KO & Lam 1984; Cohen & 
Wygnanski 1987a; Koch et al. 1989). Several studies indicate that over a long time, 
helical patterns exist approximately as long as ring-like vortices (Mattingly & Chang 
1974 ; Browand & Laufer 1975). Recent experimental investigations by Dimotakis, 
Miake-Lye & Papantoniou (1983) as well as Tso & Hussain (1989) show convincingly 
that even fully developed jets are dominated by ring-like and helical structures 
whose dynamics become largely independent of the Reynolds number when this 
parameter is large. Single helical vortices as well as helical structures of higher 
azimuthal wavenumber have been observed. Using large-scale vorticity peaks for the 
detection of organized motion, Tso & Hussain (1989) reveal the phase characteristics 
of axisymmetric and helical configurations and also observe a double helical pattern 
in the far field of a jet. Recently, Kusek, Corke & Reisenthel (1989) designed an 
apparatus which allows them to excite helical modes with azimuthal wavenumbers 
up to +/-6.  Experiments conducted with jets seeded by + / - 1  helical modes 
reveal a staggered vortical pattern. Furthermore, Corke & Kusek (1991) show the 
resonance of these helical mode pairs in the manner discussed by Cohen & Wygnanski 
(19873) in their stability analysis of a jet excited by multiple azimuthal modes. 

The three-dimensional wake behind axisymmetric bodies provides an interesting 
comparison for the vortex structure found in the axisymmetric jet. Whereas inviscid 
mechanisms have been demonstrated to dominate the jet’s large-scale evolution, the 
Reynolds number does have crucial importance in determining the resulting 
organized motions of the wake. For Reynolds numbers lower than 400, the vortex 
sheet coming off a sphere has been observed to roll up into ring-like vortices (Taneda 
1956; Modi & Akatsu 1984). With increasing Reynolds number, a breakdown in the 
individuality of vortex structures occurs while the roll-up occurs closer to the sphere. 
The pictures of Ilegbusi & Spalding (1984) show single helical patterns of vortex 
shedding in both turbulent and laminar wakes of bars and wedges at Reynolds 
numbers between 6.34 x lo4 and 8.0 x lo4. Achenbach (1974) first suggested a double 
helical structure when he observed the separation point rotating around a sphere’s 
surface for Reynolds numbers above 6 x lo3. However, he rejected this proposition 
because of its apparent violation of the circulation theorem. The flow studies by Pao & 
Kao (1977) on a sphere being towed in a stratified fluid at Reynolds numbers ranging 
from 4 x lo3 to 2 x lo4 demonstrate a close-ended double helical vortex configuration, 
where each helix has opposite azimuthal wavenumber, which satisfies such a 
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constraint. Monkewitz (1988) establishes the absolute instability of incompressible 
axisymmetric parallel wake profiles with respect to  the modem = 1 type disturbance. 
Although viscous effects appear to  play a much less significant role in the 
axisymmetric jet evolution, a study of the helical structures within the jet could 
provide some insight into the evolution of the primary and secondary structures in 
three-dimensional wake flows as well. 

The effectiveness of the inviscid vortex filament technique (Leonard 1985) for 
providing a clear picture of the vorticity dynamics has been established in our earlier 
studies of mixing layers, wakes and jets disturbed by axisymmetric modes (Ashurst 
& Meiburg 1988; Meiburg & Lasheras 1988, Lasheras & Meiburg 1990; Martin & 
Meiburg 1 9 9 1 ~ ) .  We will continue to use this method to analyse the three- 
dimensional evolution of a nominally axisymmetric transitional jet under helical 
perturbations, with particular focus on the braid region between primary vortices as 
well as on the nonlinear evolution of the primary structures themselves. Knowledge 
of the large-scale vortical formations and their dynamics, in a jet subject to helical 
disturbance, helps to form a more thorough understanding of the jet’s three- 
dimensional evolution, which hopefully will lead to  improved strategies for the 
control of such flows. As a first step we will, in $ 2  of this paper, consider the evolution 
of the jet under a single helical disturbance. Subsequently, the influence of an 
additional azimuthal perturbation as well as the amplitudes of the two waves will be 
addressed. Based on the importance that the ratio of jet radius to momentum 
thickness had on the dynamics of the emerging structures in our earlier study, we will 
give particular attention to  studying the influence of this parameter for the jet whose 
primary structure is helical in nature. Section 3 will summarize the findings. 
Preliminary results on the evolution of nominally axisymmetric jets perturbed by 
helical waves were reported by Meiburg & Martin (1991) as well as Martin & Meiburg 
(1991 b). 

2. Helical waves of azimuthal wavenumber 1 
In  following the numerical method as outlined by Martin & Meiburg (1991 a),  we 

represent the axisymmetric shear layer by a number of ring-shaped vortex filaments. 
By assigning a circulation per filament ri, we attach a velocity scale to the base flow. 
The velocity difference between the centreline and infinity serves as our characteristic 
velocity. The thickness of the axisymmetric shear layer, which we take to  represent 
the characteristic lengthscale, is determined by the core radius u of the filaments. In  
terms of these units, we will analyse jets whose initial radius R is 5.  Our study is 
based on the temporal evolution of the axisymmetric jet. We assume streamwise 
periodicity while advancing each of the nodes comprising the vortex filaments. For 
a more complete discussion on the details of the numerical method used, we refer the 
reader to  the mixing-layer study by Ashurst & Meiburg (1988). In  order to  assess the 
accuracy of the vortex filament method employed here, we show in figure 1 the 
numerically calculated linear growth rates obtained for m = 1 disturbances and 
different velocity profiles characterized by various values of R / 0 .  These data, after 
conversion to spatial growth rates via a Gaster transformation, are to be compared 
with those provided by Cohen & Wygnanski ( 1 9 8 7 ~ ) .  In  doing so, we have to  keep 
in mind that even for the same values of RIB, there can be differences in the details 
of the velocity profiles. Comparison with Cohen & Wygnanski’s figure 5 shows that 
the maximum growth rate obtained by the vortex filament method is too large by 
about a factor of three to  four. This well-known phenomenon (e.g. Meiburg 1989) is 
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FIGURE 1. Linear growth rates obtained with the vortex filament technique for helical disturbances 
with m = 1 and a variety of velocity profiles characterized by different values of R/B:  -.-.-, 
RIB = 6.6; ---, 13.1; ......, 22.6; -, 47.0. 

primarily because the vortex filament cores do not deform under the influence of the 
external strain field ; rather, their cross-section remains circular. However, there is a 
clearly defined wavelength for which the growth rate achieves a maximum value. In  
addition, the maximum growth rate declines with increasing smoothness of the 
velocity profile. Furthermore, smoother velocity profiles allow shorter wavelengths 
to be amplified. All of the above trends are in agreement with the results of Cohen 
& Wygnanski. Consequently, we can conclude that the vortex filament technique is 
able to duplicate the physically relevant dynamics, while it may underpredict the 
length of time it takes for certain events to occur. Furthermore, Martin & Meiburg 
(1991 a ,  figures 12 and 13) present data concerning the convergence of the numerical 
results with improving spatial and temporal discretization which establish that the 
results to be discussed in the following are converged. 

A jet with an initial ratio of jet radius R to momentum thickness t? of 22.6 will 
initiate the present analysis. This ratio determines the initial linear evolution of the 
jet and provides a means for comparison with the jets under axisymmetric 
perturbation considered earlier. Based on this value, we determine a maximally 
amplified streamwise wavenumber a from the calculations of Michalke & Hermann 
(1981), who give spatial growth rates versus non-dimensional frequency for a given 
value of the RIB in inviscid jets under helical disturbance. As pointed out above, 
Cohen & Wygnanski provide similar data, including modes m 2 2. 

By using Gaster’s (1962) transformation, we then obtain the streamwise 
wavelength of our control for the temporally evolving problem. For jets of 
RIB = 22.6 under azimuthal wavenumber-1 disturbance, the resulting wavenumber 
a is calculated as approximately 1. The streamwise length of our control volume is 
then 277. We impose helical perturbations of azimuthal wavenumber m of the form 

x’ = el R cos (a~+m+) .  

This perturbation displaces the centreline of a vortex filament a distance x’ into the 
streamwise direction. el indicates the amplitude of the perturbation. We typically 
assume this amplitude to be 5 YO of the jet radius. Here, as opposed to the case of a 
streamwise displacement due to an axisymmetric perturbation considered in our 
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FIGURE 2. Evolution of an axisymmetric jet with RIB = 22.6 perturbed by a helical wave of 
azimuthal wavenumber m = 1 : (a) axial view and (b) side view of the vortex filaments at time 0.31. 
For clarity, the side view displays only those vortex filament sections located a t  y > 0, but over 
two streamwise wavelengths. The side view indicates the nature of the helical wave. Owing to the 
helical symmetry of the perturbation, streamwise vorticity contours for different streamwise 
locations from that shown in (c) for z = 4 result under azimuthal phase shift. Circumferential 
vorticity contours in the plane z = 0 are shown in (a!). Circumferential vorticity contours for 
alternate azimuthal planes result under axial phase shift. 

earlier study, the displacement of a filament centreline depends on both the 
azimuthal and the streamwise location. The overall form of the displacement is the 
same for all vortex filaments. However, there is an azimuthal phase shift in 
successive vortex filaments which results in the helical nature of the overall 
perturbation. 

2.1. Helical perturbation only 
We first consider the evolution of the axisymmetric jet under a single helical 
disturbance of azimuthal wavenumber + 1. Figure 2 (a ,  b )  displays a streamwise and 
side view of the filament centrelines early in the calculation at time t = 0.31. For 
clarity, we plot in the side view only those portions of the filament centrelines whose 
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FIGURE 3. The m = 1 helically perturbed jet at time 2.81. (a) Side view of the vortex filaments. 
Observe the growth of a strong vortex helix, corresponding in this case to regions of negative 
streamwise vorticity in the streamwise vorticity contours shown in (a) for x = 4. The strain field 
set up by the helix leads to a reorientation of the braid vorticity, which aligns itself with the 
direction of extensional strain, thus resulting in positive streamwise braid vorticity. The contours 
of the circumferential vorticity shown in ( c )  display the cores of the emerging vortex helix. 

location in y is greater than zero. Two streamwise wavelengths are shown. The helical 
nature of the initial streamwise perturbation can already be seen from the side view 
of the filaments. A contour plot of the streamwise vorticity at streamwise location 
x = 4 for this time is shown in figure 2 (c). The streamwise vorticity is indicative of the 
initial perturbation. The helical symmetry of the initial perturbation persists in the 
evolution of the flow. By calculating the streamwise vorticity at  one axial location, 
the view at all other axial locations results from a simple azimuthal phase shift. The 
same type of symmetry exists for planes of constant azimuth. Figure 2 (d )  shows the 
circumferential vorticity in the plane z = 0. Different azimuthal planes exhibit the 
same distribution with an axial phase shift. Helical symmetry mandates that one 
azimuthal or axial plane be characteristic of all other planes. 

At time t = 2.81, figure 3 displays the roll-up of the vorticity layer into a strong 
helical vortex. The nominally axisymmetric shear layer undergoes a Kelvin- 
Helmholtz-like instability, with vorticity concentrating into a helix. As in the case 
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FIQURE 4. The m = 1 helically perturbed jet at time 8.75. (a) Side view of the vortex filaments. (b) 
Five filament centrelines shown in their entirety. I n  contrast to ring-dominated jets under 
azimuthal perturbation, no concentrated streamwise structures emerge. Owing to the helical 
symmetry of the problem the braid vorticity appears as a sheet-like layer of positive vorticity in 
the streamwise vorticity contours in (c) at 2 = 4, while the helix slices through the plane and creates 
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of axisymmetric perturbation, a strain field with a free stagnation point forms in the 
braid region between successive segments of the helix. However, the stagnation line 
itself is now a helix. The axis of extensional strain correspondingly orients itself in 
the braid region, approximately normal to the emerging helical vortex. The vorticity 
layer wraps around the helical structure, reinforcing it, as the resulting strain field 
begins to deplete the braid region of its vorticity. As the braid vorticity reorients 
itself in the strain field of the growing helix, streamwise vorticity becomes 
increasingly generated. Figure 3 ( b )  shows the corresponding alteration in the 
streamwise vorticity. The concentrated region of negative streamwise vorticity 
represents the helix intersecting the plane, whereas the weaker layer of positive 
streamwive vorticity indicates the presence of the braid vorticity. The circumferential 
vorticity contours shown in figure 3 illustrate the evolving cross-sectional dimensions 
of the helical vortex. The two regions of opposite-signed streamwise vorticity are 
reflected in the configuration of a single vortex filament. Each filament, as it must 
remain closed under inviscid dynamics, is part of the helix in one region and part of 
the braid in some other region. Where it is a part of the helix, the streamwise 
vorticity component of the filament is of opposite sign to where it represents a part 
of the braid. 

The evolution has become more pronounced at time t = 8.75. The side view in 
figure 4 displays the continued progression of vorticity into the helical vortex. Five 
vortex filaments are also shown in their entirety. Because of the helical symmetry of 
the present problem, no concentrated streamwise vortices can form in the braid 
region. Whereas in ring-dominated jets, an azimuthal perturbation leads to both 
signs of streamwise vorticity in the braids, the streamwise braid vorticity in helically 
perturbed jets is of a single sign, which is opposite to that of the streamwise vorticity 
of the helix. The streamwise vorticity contours of figure 4 indicate the sheet-like 
nature of the braid vorticity. The braid vorticity layer itself has the form of a 
flattened sheet of helical nature, occupying the space between the vortex helix. In 
contrast to the jet dominated by ring-like vortices, the principal axis of extensional 
strain in the braid region now has an additional circumferential component. As the 
braid vorticity increasingly orients itself along the direction of extensional strain, 
more positive streamwise braid vorticity is generated. The braid vorticity appears to 
spiral around the concentrated negative region of streamwise vorticity, as the layer 
of braid vorticity begins to wrap around the helical vortex. 

Meanwhile the circumferential vorticity contours illustrate the ongoing depletion 
of braid vorticity by the vortex helix. The upstream neighbourhood of the vortex 
helix experiences a stronger depletion of vorticity than the corresponding 
downstream neighbourhood. In our earlier study, we discussed this effect of the jet 
curvature on the strain field of the ring-dominated jet. The curvature shifts the free 
stagnation point towards the jet axis, and thus results in greater extensional strain 
in the braid region upstream of a ring-like vortex than downstream. In figure 4(e ) ,  
we provide contours of the eigenvalue of maximum extensional straining in the plane 
q5 = 0 at time 8.75. The upstream neighbourhood of the helical vortex undergoes 
slightly more intensive extensional strain than equivalent downstream locations. 
Again, the stagnation point is shifted within the connecting braid region as compared 

a concentrated region of opposite-signed streamwise vorticity. ( d )  Contours of the circumferential 
vorticity. They show the formation of a vortex helix with round cores as well as the more intense 
depletion of the upstream neighbourhood of the helix. ( e )  Contour plot of the size of the positive 
eigenvalue of the deformation tensor at time 8.75. Greater extensional strain occurs in the 
upstream neighbourhood of a helix leading to greater depletion of vorticity in that region. 
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- X  

FIGURE 5. Nodes of the filament centreline with z > 0 are connected to form a surface. 
Furthermore, the stagnation line is shown in the frame of reference moving with the phase velocity 
of the vortex helix. 

to plane mixing layer, creating a streamwise asymmetry in the overall extensional 
strain field of the jet. Figure 4(e) is consistent with the braid’s depletion of vorticity. 
Greater depletion of the braid vorticity can then be expected upstream of the vortex 
helix. Tso & Hussain (1989), in their study of organized structures in a fully 
developed jet, reported on a similar finding. Their measurements of ensemble- 
averaged shear strain rate 

displayed marked variation upstream and downstream of the helical structure. 
Where the shear strain rate was strong, intense small-scale turbulence production 
and mixing occurred. In  figure 5 ,  the nodes of the filament centrelines, whose z value 
is greater than zero, are connected to form a shaded surface. We furthermore plot the 
stagnation line in the frame of reference moving with the velocity of the evolving 
helical structure. The stagnation line appears in the braid, parallel to the successive 
regions of the helical vortex. The helical nature of the stagnation line is apparent. At  
this time, the braid vorticity has wrapped around the helix several times, thus 
leading to significant stretching of the vortex filaments. 

In terms of the analysis by Lin & Corcos (1984), the braid vorticity layer has an 
infinite aspect ratio, as peeling the braid vorticity layer away from the vortex helix 
would reveal an infinite sheet. Lin & Corcos, as well as Neu (1984), discuss the 
evolution of the braid region for the case of the plane mixing layer. Their study 
selectively isolates the braid regions as a two-dimensional layer of vorticity 
undergoing a constant plane strain. They find that the resulting evolution of a 
vortical braid region strongly depends on its aspect ratio, which is defined as the 
spanwise extent of a region of streamwise vorticity of one sign divided by its 
thickness. Increasingly larger aspect ratio sheets, under the action of strain and 
viscosity, collapse into concentrated vortices for increasingly smaller non-dim- 
ensional circulation strength. In  our earlier study, we demonstrated the applicability 
of their results to the jet. The finite aspect ratio of the braid vorticity in the ring- 
dominated jet allowed for the emergence and subsequent collapse of counter-rotating 
braid structures. The helix-dominated jet, on the other hand, provides an analogous 
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FIGURE 6. Evolution of an axisymmetric jet with RIB = 22.6 perturbed by a helical wave of 
azimuthal wavenumber rn = 1 as well as by an additional azimuthal wave that introduces radial 
perturbation vorticity corresponding to a corrugated nozzle: (a) axial view and (b) side view of the 
vortex filaments a t  time 0.31. The axial view indicates the form of the azimuthal wave. The 
azimuthal wave breaks the helical symmetry. The contours of streamwise vorticity shown in (c) 
display the resulting modulation of both the positive layer of sheet-like braid vorticity and the 
opposite-signed region of the helix at z = 2. 

situation to the infinite-aspect-ratio braid vorticity layers of the Lin & Corcos study. 
They predict that, rather than forming counter-rotating streamwise braid vortices, 
a perturbed infinite strained vortex sheet will redistribute into vortices of a single 
sign of circulation. This suggests that instability within the braid region of a helix- 
dominated jet will evolve differently from that which occurs in ring-dominated jets. 
In  the following section, we will analyse the fully three-dimensional evolution by 
breaking the helical symmetry of our flow. 

2.2 The effect of nozzle corrugation 
In the case previously considered (Martin & Meiburg 1 9 9 1 ~ )  of a jet dominated by 
vortex rings, we introduced an additional periodic radial displacement, thus 
simulating the jet emerging from a corrugated nozzle. We observed instabilities of 
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FIGURE 7. The m = helically perturbed jet a t  time 2.66 under the additional influence of a periodic 
perturbation in the azimuthal direction: (a )  streamwise view and ( b )  side view of the vortex 
filaments. As a result of the additional azimuthal wave, the sheet-like braid vorticity undergoes a 
Kelvin-Helmholtz instability and concentrated streamwise vortices form in the braid region of the 
streamwise vorticity contour shown in ( c )  at x = 2. In contrast to jets dominated by vortex rings, 
the streamwise braid vortices are all of a single sign. 

the ring-like vortices and the secondary braid structure of the jet. The different form 
of these structures under helical perturbation raises the question of their stability 
under an identical, added azimuthal perturbation. Several possibilities exist for 
instability in helical vortices. Widnall ( 1972) has demonstrated both long- and short- 
wavelength instabilities occurring in helical filaments, plus an instability that exists 
due t o  the induction of successive segments of the helix. Furthermore, the discussion 
by Pierrehumbert & Widnall (1982) of a translative instability of multiple spanwise 
rollers suggests the possibility of a helix instability as well, as the strain field existing 
between successive segments of the helix is similar to that generated by spanwise 
roller in a plane mixing layer. 

We again choose as our base flow a jet with ratio R/O = 22.6 and perturb it with 
the helical wave of 52.1. We include an additional azimuthal perturbation of radial 
component only, thereby breaking the helical symmetry of the problem while 
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FIGURE 8. The m = 1 helically perturbed jet at time 7.89 under the additional influence of a periodic 
perturbation in the azimuthal direction. While the radial corrugation of the vorticity field shows 
no evidence of growth, the side view of the vortex filaments in (a) shows a developing streamwise 
modulation in the vortex helix. (b) Contours of the streamwise vorticity at z = 2. Notice the 
increasing strength of the streamwise braid vortices under the Kelvin-Helmholtz instability 
occurring in the braid region. 

simulating nozzle corrugation. Therefore, in addition to the streamwise dislocation 
of the helical wave, filament centrelines are displaced periodically in the radial 
direction. The radial location of a filament centreline is then given by 

r = R ( l  +e2 cos (nq5)). 

As the wavenumber n of the corrugation we select the value 5 ,  and ep is taken to be 
0.05. The streamwise view of the vortex filaments at  time t = 0.31 (figure 6) displays 
the shape of the corrugation. The side view of the filaments shows the developing 
concentration of vorticity into the helical pattern reminiscent of figure 2. Contours 
of the streamwise vorticity at x = 2 illustrate the symmetry breaking effect of the 
added azimuthal perturbation. The result is a wavy modulation of both the emerging 
layer of positive braid vorticity and the beginning trace of the concentrated negative 
region of streamwise helix vorticity. Initially, the ring-dominated jet, under identical 
corrugation, developed counter-rotating braid structure. In  contrast, the streamwise 
braid vorticity of the helix-dominated jet initially has the form of one elongated, 
smooth layer of a single sign. 

At  time t = 2.66, the side view in figure 7 shows the roll-up of vorticity into a 
concentrated helical vortex. The streamwise view of the filaments demonstrates the 
spread of the shear layer. Little to no growth in the corrugation is evident. The 
streamwise vorticity contours show concentrated structures, all of a single sign, 
forming within the braid region. This is in marked contrast to the resulting counter- 
rotating streamwise vortex pairs of the ring-dominated jet. The initial formation of 
the braid vorticity layer into a single-signed thin vorticity layer suggests that a 
Kelvin-Helmholtz instability causes the braid structures to form. The same 
instability mechanism is then responsible for the primary and secondary structure in 
a helix-dominated jet. Figure 8 of Lin & Corcos’ study of the mixing layer displays 
a two-dimensional braid vortex of large aspect ratio taken from a counter-rotating 
pair. The trace of a similar Kelvin-Helmholtz instability appears to occur within the 
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FIGURE 9. The 'rn = 1 helically perturbed jet a t  time 10.23 under the additional influence of a 
periodic perturbation in the azimuthal direction. (a )  Side view of the vortex filaments. The 
streamwise amplitude of the modulation along the helix continues to increase, thereby creating an 
alternating sign along the azimuthal extent of the vortex helix in the streamwise vorticity contour 
shown in ( b )  for z = 2. 

vortex. The small scale upon which the instability develops does not allow for its 
adequate resolution. Lin & Corcos furthermore consider the case of an infinite-aspect- 
ratio sheet. The circulation of the layer of vorticity is kept uniform along the length 
of the sheet, thereby giving the vortices their infinite aspect ratio. By slightly 
perturbing the braid vorticity layer, streamwise structures result, similar to the ones 
we see in the helix-dominated jet. Braid vortices emerge, all of a single sign of 
circulation. The Lin & Corcos analysis, however, sets the strain felt by a streamwise 
braid vortex to a constant value. By selectively analysing the streamwise braid 
vortices only, their study does not account for the effect that these increasingly 
concentrated, single-signed vortices have on the primary structures. 

Figure 8 displays the evolution of the jet a t  time t = 7.89. The streamwise vorticity 
contours show the single-signed braid vortices' concentration. The Kelvin-Helmholtz 
instability, along with the extensional strain field set up by the vortex helix, continue 
to strengthen the single-signed braid vortices. The side view shows the helical vortex 
beginning to deviate slightly from exact helical form. Owing to the added radial 
displacement, the evolution of the streamwise vorticity of the vortex helix is subject 
to the competing effects of local and global induction. As discussed in Martin & 
Meiburg (1991 a ) ,  if local induction is to  dominate, regions of high curvature along 
the vortex will acquire increased velocity. Global induction in the jet opposes local 
induction by decreasing velocity with decreasing proximity to the jet axis. The side 
view a t  time t = 7.89 shows portions of the helical vortex, located at larger radius and 
with greatest curvature, overtaking neighbouring portions located closer to the jet 
axis. This suggests that, for the present parameters, local induction plays a major 
role in determining the helix's early evolution. 

The streamwise modulation of the helix suggests the possibility of further 
instability leading to the growth of these small perturbations due to the overall strain 
field. Based on the analyses by Widnall (1972), Widnall et al. (1974) and 
Pierrehumbert & Widnall (1982), we can only suggest how their results might apply 
to the jet with a single vortex of helical form. Again i t  is pointed out that the strain 
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FIGURE 10. The temporal evolution of the radial amplitude a, of the vortex helix waviness and the 
streamwise amplitude a, of the vortex helix's deviation from a perfect helix of equal streamwise 
wavelength. Also plotted is the value 7 ,  where tan (7)  = as/ar.  The evolving vortex helix rotates 
continuously, thereby preventing instability. 

field that exists between successive helix segments has an additional azimuthal 
component. If an instability similar to the one observed in the ring is t o  occur in the 
helix, we expect the helix's deviation from its unperturbed form to grow in an 
exponential fashion. I n  particular, we expect such an instability to occur as the 
rotation rate of the helix in the overall strain field vanishes, since such an elimination 
of rotation was deemed necessary for the Widnall-type vortex ring instability as well. 
Under these circumstances, wavy perturbations can grow in the stagnation point 
flow created by the rest of the helix, so that helical vortex instability can result. 

Figure 9 shows the resulting flow at time t = 10.23. The region of concentrated 
streamwise vorticity of the helix now begins to alternate in sign in the streamwise 
vorticity contour plot, thus indicating that the helix now changes streamwise 
direction along its extent. From the side view, it is apparent that  the streamwise 
modulation in the helical vortex continues to grow. To investigate the stability of the 
helix, we consider the evolution of the amplitudes of the streamwise and radial 
deviations of the vortex helix centreline from exact helical shape. We compute the 
circumferential vorticity of the vortex helix a t  successive q5 = constant planes in 
increments of 4.5". The centreline of the vortex then connects the successive locations 
of maximum circumferential vorticity. In figure 10 we plot, as a function of time, the 
maximum displacement between the streamwise location of the helical vortex's 
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FIGURE 11. The m = 1 helically perturbed jet at time 15.70 under the additional influence of a 
periodic perturbation in the azimuthal direction. ( a )  Streamwise view : the radial amplitude of the 
helix corrugation tends to zero as it rotates into the streamwise direction. ( b )  Side view of the 
vortex filaments. (c) Contours of the streamwise vorticity at  z = 2. Notice the azimuthal variation 
in the extent of the collapse of the axial braid structures. Braid vortices in the downstream region 
between successive segments of the helix experience greater strain and therefore faster collapse. 

centreline and that of an exact helix of identical streamwise wavelength. Also shown 
is the radial amplitude of the waviness of the helix along with the angle y ,  where tan 
( y )  is given by the ratio of streamwise and radial deviational amplitudes. Variation 
in y will then illustrate a rotation of the helix. The initial downswing in the 
streamwise amplitude suggests that, for early time, when the vortex is weak, global 
induction dominates the evolution of the helix. Local induction then sends the helix 
through zero streamwise deviational amplitude. By the final time of the simulation, 
the streamwise amplitude begins to  level off. The radial amplitude of the vortex helix 
is constant until about time t = 10 when it begins to decrease as a result of being 
rotated in the streamwise direction. In this way, a strong increase in the modulation 
to the vortex helix, by means similar to the translative instability of the Widnall- 
type instability, is prevented. 

Figure 11 shows the final time of simulation a t  time t = 15.70. The streamwise view 
of the filaments shows the near elimination of radial corrugation in the vortex helix. 
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The side view shows the minor increase in the streamwise modulation of the vortex 
helix as it continues its rotation. The streamwise vorticity contours indicate the 
increasingly concentrated nature of the single-signed braid vortices. The braid 
vortices become apparent in the side view of the filaments as well. Portions of the 
filament centrelines concentrate into a streamwise pattern within the braid region. 
Once the helical symmetry is broken and concentrated braid vortices can form via 
the Kelvin-Helmholtz instability, they are candidates for the collapse predicted by 
Lin & Corcos. For a fixed streamwise location, the braid vortices vary in their 
concentration and structure based both on their azimuthal location (which 
determines their proximity to the helix) and whether a braid is inside the helix or is 
emerging again on the outside of the helix (figure l l c ) .  Those braid vortices that are 
located at  a greater distance from the helix are less concentrated. Where a braid 
passes inside the helical vortex it collapses to nearly circular form, while portions of 
the same braid that are wrapped to the outside of the helix remain flattened. 

Referring to the extensional strain field of the helix-dominated jet given in figure 
4 ( e ) ,  at a greater distance from the helix, the extensional strain rate is in general 
smaller than in regions closer to the helix. In  particular, regions slightly upstream of 
the helix experience a more intensive strain than the regions downstream of the helix 
where braid vorticity is wrapped around the outside. This suggests a dependence of 
the resulting braid structure on the overall strain field. The same dependence is found 
in the Lin & Corcos (1984) model of streamwise braid collapse in the plane mixing 
layer. In their study, collapse of a braid vortex occurs owing to the resultant inward 
velocity from the (constant) plane strain set up by the spanwise rollers and the self- 
induced velocity of the streamwise vorticity layer. In this model problem, the 
imposed extensional strain field acts exclusively in the streamwise direction. 

Comparison of the collapse times in the Lin & Corcos study and that occurring in 
the present investigation is difficult. The variation of the strain rate with time, which 
occurs in the jet, and the temporal dependence of a braid’s circulation strength 
distinguish the vortices of the jet from the model problem of Lin & Corcos where the 
circulation of a streamwise vortex changes only as a result of diffusion and a constant 
rate of plane strain on a vortex is maintained. Furthermore, although their aspect 
ratios are roughly of the same order before collapse, a comparison of the times 
involved for the collapse of braid vortices in helix-dominated jets and ring- 
dominated jets is also complicated by some of the differences between the two cases. 
On the one hand, for the helix-dominated jet, the diversion of the extensional and 
compressive strain into the circumferential direction might suggest an increase in 
time for such a collapse to occur over the time required for the same evolution of 
braid vortices in a ring-dominated jet. On the other hand, the time for collapse in a 
given-aspect-ratio vortex depends not only on the strain it experiences, but also on 
the strength of the braid vortex. Since the braid vorticity is continuously reoriented 
into the streamwise direction by the primary instability, and since concentrated 
braid vortices emerge by way of the Kelvin-Helmholtz instability in the helix- 
dominated jet, the strengths of the braid vortices in the two jets dominated by rings 
and helices follow different evolutions, making a comparison of their collapse times 
less meaningful. We plot in figure 12 the circulation versus time of a braid vortex 
occurring under the present Kelvin-Helmholtz instability (cf. figure 16, Martin & 
Meiburg 1991a for the case of the ring-dominated jet). Although still approximately 
linear, the growth rate of circulation within a braid vortex is greater than the 
increase in strength of the counter-rotating braid vortices of the ring-dominated jet. 

To quantify the braid instability in the helix-dominated jet, we plot in figure 13 



474 J .  E .  Martin and E .  Meiburg 

I 
1 ' ' ~ 1 ~ ~ ~ 1 ' ' ' 1 ' ' ~ 1 * ' ' I  

0 4 8 12 16 20 
t 

FIGURE 12. The circulation of the streamwise braid vortex as a function of time. Increase in the 
circulation occurs nearly linearly. The growth rate of the circulation of a braid vortex occurring 
under the Kelvin-Helmholtz instability in helix-dominated jets is increased over that occurring in 
the braid vortices of a ring-dominated jet (cf. fig. 16, Martin & Meiburg 1991~).  
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FIGURE 13. Growth of the ratio r, of the maximum streamwise braid vorticity to its initial value 
as a function of time: -, m = 1 helical wave calculation; ---, m = 1 helical wave calculation 
with additional equal-amplitude radial disturbance resulting in a Kelvin-Helmholtz instability of 
the braid vorticity layer. 

the evolution of the ratio rw of maximum streamwise braid vorticity to its initial 
value. We show the two cases of helical waves with and without additional 
corrugation. For a helical perturbation only, the growth in the maximum streamwise 
vorticity is due to the reorientation of the initially circumferential vorticity into the 
streamwise direction and its subsequent stretching in the time-dependent strain field 
set up by the evolving helix. Helical symmetry, however, does not allow for the 
concentration of the streamwise vorticity. This changes when an azimuthal 
perturbation is introduced as well. Now the Kelvin-Helmholtz instability of the 
braids produces nearly exponential growth in To. An expression for rw for braids 
undergoing collapse has been given by Lin & Corcos (1984). Again, comparison with 
their results is not meaningful since the braids of their study do not undergo an 
evolving strain field and their strength changes only under the action of diffusion. 

Figure 14 ( a )  illustrates the varying degrees of extensional and compressive strain 
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that a braid vortex is subject to in time. We plot the evolution of the three 
eigenvalues of the strain tensor as it occurs at the centre of the braid vortex located 
in the quadrant y > 0, z < 0 and streamwise location x = 2. Referring in particular 
to the side view of the filaments in figure 11 ( b ) ,  the y-  and z-locations of the braid 
centre and the position where we perform the calculation at  the final time of the 
simulation are given by y = 2.4 and z = -2.24. We plot the eigenvalues separately 
based on their magnitude. Figure 14(b)  shows the angle in the (x, 2)-plane of the 
eigenvector associated with the eigenvalue whose magnitude remains largest 
throughout the simulation. The direction of the eigenvector then determines the 
direction of greatest extensional strain placed upon the braid vortex. The strain rate 
on a braid is initially high as the vortex helix begins to deplete the braid region of 
its vorticity. The extensional strain vector within the braid begins by pointing 21.71' 
in the (x, z)-plane. As expected, extensional strain points in the direction 
approximately perpendicular to the vortex helix. The line perpendicular to a helix of 
radius identical to the initial radius of our jet and of streamwise wavelength 
equivalent to the vortex helix, forms an angle of 17.44", as sketched in figure 15. The 
extensional strain rate of the maximum eigenvalue reduces considerably with time 
as the braids begin to lose their vorticity, while the strain rate of the smaller 
extensional eigenvalues grows to a value comparable to the maximum eigenvalue. 
The sudden 90" jump in the direction of maximum extensional strain, roughly a t  
time t = 10, suggests that the maximum straining motion on a braid vortex is shifted 
to the direction perpendicular to that of the original overall extensional straining. 
Eventually, the strain placed upon a streamwise braid vortex in the direction 
approximately parallel to the helical vortex reaches levels greater than the 
extensional straining occurring perpendicular to the helical vortex. This is in 
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FIGURE 15. Sketch of a helix, drawn in the (x. z)-plane, of wavelength 21c and radius R = 5 with its 
normal direction indicated. The angle of extensional strain in the braid region of the helix- 
dominated jet begins by pointing in a direction which is approximately perpendicular to the vortex 
helix of the same wavelength and approximate radius. 

contrast to the remarks made by Lin & Corcos for the plane mixing layer. There it 
was found that the strain in the streamwise direction was always of greater 
magnitude than any occurring in the plane of the spanwise rollers. The explanation 
for this switch in the direction of maximum extensional straining in the helix- 
dominated jet is the strain generated between neighbouring single-signed, streamwise 
braid vortices. 

2.3. Influence of the azimuthal wave amplitude 
In  this section, we analyse the interplay between the helical wave and the azimuthal 
wave by systematically varying the azimuthal wave amplitude, while leaving the 
azimuthal wavenumber a t  the constant value of 5. In  all cases, we set the helical 
displacement amplitude el to  5 % of the jet radius, i.e. the displacement of an initially 
axisymmetric filament centreline by the helical perturbation wave is given as 

x’ = el R cos (ax+$)  = 0.05 R cos (ax+#).  

The radial displacement is characterized by the azimuthal perturbation amplitude e2, 
so that the initial radial position of the filament centreline takes the form 

r = R( 1 +e2 cos (54)) 

We maintain the ratio RIB a t  the value of 22.6 and the streamwise wavenumber a 
a t  1,  so that we can compare with the cases e2/e1 = 0 and e2/e1 = 1 considered in $3 2.1 
and 2.2, respectively. The two additional cases we will consider in this section differ 
from the flows analysed in 992.1 and 2.2 in their azimuthal wave amplitudes e&. In  
particular, we will study the cases of e2/el = 0.1 and e2/E1 = 0.3. The dominant helical 
structure in these flows develops similarly to the previously considered cases in that 
the streamwise vorticity of the helical vortex is of opposite sign compared to that of 
the braid. However, the effect of the corrugation becomes increasingly evident for 
larger values of e2/e1, leading to more concentrated braid structures and a dominant 
vortical structure whose shape deviates more and more from that of a perfect helix. 

The streamwise vorticity contours shown in figure 16 for approximately identical 
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FIQURE 16. Streamwise vorticity contours at nearly identical times for the ratios of azimuthal to 
helical perturbation amplitude of (a) 0, ( b )  0.1, (c) 0.3 and (d) 1.  While even small azimuthal 
perturbations lead to a concentration of the braid vorticity, this concentration proceeds faster for 
larger azimuthal perturbation amplitudes. 

times provide a measure of the increasing three-dimensionality of the jets as cp/el is 
varied. For all cases shown, the difference between successive contour levels is the 
same. We recognize that even the smallest azimuthal wave amplitude corresponding 
to the case c2/c1 = 0.1 leads to a moderate concentration of the braid vorticity. Thus, 
while a critical azimuthal wave amplitude for braid vorticity concentration to occur 
does not appear to exist, it is obvious that this concentration happens much more 
slowly as c2 is decreased. This can easily be understood in terms of the Lin-Corcos 
mechanism for the collapse of the braid vorticity. While the external strain on the 
braid, which is mostly a function of the emerging helical vortex, develops nearly 
identically for the present set of flows, the second component necessary for the 
collapse of the streamwise vorticity, i.e. the self-induced velocity of the emerging 
streamwise structure, is much weaker as c is reduced. This much slower evolution is 
also reflected in figure 17, which depicts the ratio of the instantaneous maximum 
streamwise vorticity to its initial value for the various cases. For the case of a helical 
wave only, r, increases only as a result of the reorientation of the filaments in the 
strain field set up by the emerging helical vortex. However, as soon as there is an 
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FIQURE 17. Ratio of the maximum streamwise braid vorticity to its initial value for various ratios 
of azimuthal to helical perturbation wave amplitudes. Higher azimuthal perturbation wave 
amplitudes lead to a more rapid concentration of the streamwise braid vorticity into large scale 
braid vortices. Helical 5% and: -, azimuthal 0;  - .-, azimuthal 0.5 % ; . . . . . ., azimuthal 1.5% ; 
_ _ _ _  , azimuthal 5%. 

additional azimuthal wave, the resulting concentration of the braid vorticity into 
large-scale streamwise structures leads to an accelerated growth of the maximum 
streamwise vorticity. The fact that in figure 17 the transition between the purely 
helical and the eZ/el = 1 case is smooth underlines again that there is no threshold 
value for ez that  has to be exceeded for braid vorticity concentration to occur. 

An important question to ask concerns the asymptotic strength of the braid 
vortices for long times, especially as a function of the azimuthal perturbation 
amplitude. In  our earlier study, we had found that in ring-dominated jets the 
formation of counter-rotating streamwise braid vortices proceeded more slowly for 
smaller amplitude azimuthal perturbation waves. Hence, most of the braid vorticity 
had already become entrained into the large-scale rings before a significant 
reorientation into the streamwise direction could take place. I n  this way lower 
amplitude azimuthal perturbations resulted in weaker braid vortices. For helically 
dominated jets, the situation is qualitatively different. Independent of the azimuthal 
wave amplitude, each vortex filament, as i t  has to remain connected, has to be part 
of the braid in some region. Hence, as one follows the helical braid once around the 
jet, the number of filaments that form the braid is not a function of the azimuthal 
wave amplitude, but only of the streamwise wavenumber of the helical perturbation 
wave. In  this way, the circulation contained in the braid over one helical turn is 
directly proportional to the streamwise wavelength of the helical perturbation. If we 
assume that for long times all of the braid circulation becomes concentrated in n 
streamwise braid vortices, where n is the azimuthal wavenumber, we recognize that 
the circulation of a streamwise braid vortex should approach a value 

AU r=- 
an 

where AU is the velocity difference between the jet centreline and the far field. We 
can summarize then that, in contrast to the ring-dominated jet, where the 
asymptotic circulation of the streamwise braid structures is a function of the 
streamwise and the azimuthal wave amplitudes, those parameters should not affect 
the long-time strength of the braid vortices in helical jets. 
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FIGURE 18. Evolution of an axisymmetric jet with RIB = 11.3 perturbed by a helical wave of 
azimuthal wavenumber m = 1 as well as by an additional azimuthal wave that introduces radial 
perturbation vorticity corresponding to a corrugated nozzle. Contours of the streamwise vorticity 
at  x = 9 for time 0.62 are shown. The initial evolution differs from the corrugated jet with 
R/B = 22.6 in a number of respects. Both the positive layer of streamwise braid vorticity and the 
concentrated region due to the vortex helix are thickened. The braid vorticity layer has multiple 
maxima of streamwise vorticity indicating an increased initial modulation to the braid vorticity. 

2.4. Influence of the ratio R / 8  
By decreasing a jet’s ratio of R / 8  to a value of 11.3, we observed in our study of ring- 
dominated jets a corresponding instability in the primary vortical structure. 
Decreasing RIB produced an increase in the core radius of the emerging ring-like 
vortices. By increasing the core radius while maintaining the strength of a ring, 
vortex rings become receptive to a longer wavelength for instability (Widnall et al. 
1974). The increase in core radius of the jet’s rings reduced their rotation and 
instability of the type described by Widnall and associates for isolated vortex rings 
resulted. We now discuss the influence of a reduction in the ratio R/i3 upon the 
evolution of a jet dominated by a helical vortex. We will address the question of 
whether similar instabilities occur for the helix of a jet of reduced ratio RIB. To 
increase the initial momentum thickness 0 of the jet, we double the initial core radius 
of a filament to 1.0. As in $2.2, we introduce a helical wave along with a radial 
displacement of equal amplitude in the form of a fivefold-periodic azimuthal wave. 
The decrease in RIB makes it necessary to again select the streamwise wavelength for 
maximum amplification in the linear regime. For RIB = 11.3 the results of Michalke 
& Hermann (1982) predict a streamwise wavelength of approximately 3.n. In  figure 
18, we give streamwise vorticity contours at the streamwise location x = 9 early in 
the calculation at time t = 0.62. Both the positive layer of braid vorticity and the 
beginning trace of a vortex helix are markedly thickened. Later in time, the side view 
at t = 8.91 (figure 19) shows a small modulation beginning to form in the emerging 
helix, while the streamwise vorticity contours demonstrate the dominant occurrence 
of positive streamwise braid vorticity. The Kelvin-Helmholtz instability again 
produces strong streamwise vortices within the braid region. There is, however, 
evidence of weaker opposite-signed streamwise braid vorticity in the braid region. 
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FIGURE 19. The helically perturbed jet with R / 8  = 11.3 at time 8.91 under the additional influence 
of a periodic perturbation in the azimuthal direction. (a) Streamwise view. The side view (6) shows 
the emerging helical vortex. The Kelvin-Helmholtz instability of the braid vorticity layer produces 
strong positive-signed streamwise braids in the streamwise vorticity contour shown in (c) for 
5 = 9, while the increased effect of global induction leaves remnants of a counterrotating streamwise 
vortex pair. 

FIGURE 20. The helically perturbed jet with RIB = 11.3 at time 10.47 under the additional 
influence of a periodic perturbation in the azimuthal direction: (a) streamwise and (6) side view. 

GIobaI induction has a longer lasting effect on the braid region of decreased ratio RIB 
jets, as the outer sections of a filament within the braid region continue to trail ones 
nearer to the jet axis. The stseamwise view of the filaments a t  times 10.47 and 19.84 
(figures 20 and 21) show an increased radial corrugation in the vortex helix. The 
streamwise vorticity contours illustrate the evolution of the Kelvin-Helmholtz 
instability within the braids. 
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FIQURE 21. The helically perturbed jet with R/B = 11.3 at time 19.84 under the additional influence 
of a periodic perturbation in the azimuthal direction : (a) Streamwise view : single-signed braid 
vortices induce an asymmetry in the remaining corrugation of the helix. (6) side view and ( c )  
contours of the streamwise vorticity a t  z = 9. 
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FIQURE 22. Growth of the momentum thickness (average over the circumference and one 
streamwise wavelength) as a function of time: . . . . . . , helical wave calculation, R/B = 22.6; ----, 
helical wave with additional equal-amplitude azimuthal corrugation, RIB = 22.6 ; ----, helical 
wave with additional equal-amplitude corrugation, RIB = 11.3; - - - - - -, results from the ring- 
dominated, corrugated jet with R/B = 11.3 undergoing ring instability. 
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FIGURE 23. The temporal evolution of the radial amplitude a, of the vortex helix wavineas and the 
streamwise amplitude a, of the vortex helix's deviation from a perfect helix of equal streamwise 
wavelength for the jet of ratio RIB = 11.3. Also plotted is the value y,  where a change in y indicates 
rotation of the helix. The rotation of the helix is substantially reduced over earlier considered cases. 

In Figure 22 we plot the growth with time of the spatially averaged momentum 
thickness. Included is the case of the axisymmetric jet undergoing vortex ring 
instability, along with other cases considered earlier in the present study. While, as 
pointed out above, the details of the temporal evolution are not necessarily 
reproduced correctly by the simulation, we can still identify some principal 
differences between the individual cases. In the strongly helix-dominated flows, the 
spatial average encompasses a more extensive streamwise region of growth than in 
ring-dominated jets, where roll-up occurs over only a small portion of the streamwise 
wavelength. In figure 22, this results in the appearance of initially higher levels of 
growth in jets experiencing helical roll-up. Most importantly, figure 22 indicates that 
the evolution of the helix-dominated and ring-dominated jets of equivalent reduced 
ratio RIB each follow separate trends. By the final time of the simulation, the 
momentum thickness of the helix-dominated jet with R/8  = 11.3 tends to level off 
more strongly than that of the ring-dominated jet of equivalent R/B. Figure 23 again 
looks at the temporal evolution of the radial (a,) and the streamwise(a,) components 
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of the vortex helix waviness. The helix almost does not rotate at all, as indicated by 
the lack of change in y ,  while the radial amplitude of the helix waviness grows in near 
exponential fashion. If we again assume that the mechanisms behind helix instability 
and ring instability are similar, then the results of figure 23 indicate that the criterion 
for helix instability are met. 

In an effort to compare our numerical results with previous analytical studies 
performed on isolated helical vortices, we notice that, unfortunately, much less work 
has been done on the stability of the helical vortex as compared to vortex rings. 
Motivated by evidence of helical structure in the wake of flat plates and circular 
cylinders, Levy & Forsdyke (1928) performed an early study on the stability of 
helical vortices. Widnall(l972) expanded their work by including the added effect of 
a finite core in the stability analysis. Unfortunately, the analysis is valid only for 
wavelengths which are long in comparison to the core radius of the helix, although 
consideration of the short-wavelength instability is given. The helical vortices of 
Widnall’s study provide the most appropriate model known to us for the behaviour 
of the helical vortex within the jet. In making any comparisons, however, a number 
of distinctions must be kept in mind. Widnall’s analysis is performed on a helical 
filament of constant vorticity distribution across a circular core. In the jet, the 
helical vortex emerges with time. Its vorticity distribution displays a corresponding 
temporal evolution. Furthermore, the analysis of an isolated helical vortex does not 
include the added influence of braid vorticity which occurs in the jet. In  Widnall’s 
study, a small perturbation was taken along the helix. The stability problem then 
tracks the growth of the perturbation due to the self-induced velocity of the helix. 
The perturbation was in the radial and/or streamwise directions. Widnall observed 
three forms of instability of helical vortex filaments: an instability due to mutual 
induction between turns of the helix, a long-wavelength instability and a short- 
wavelength instability similar to the short-wavelength instability found for vortex 
rings. Instability due to mutual induction occurred when streamwise successive 
turns of the helix passed within a distance one helix radius of one another. A 
distinctive feature of the helix (as opposed to a ring) is that a non-integer number of 
disturbance waves per cycle of the helix can be considered. Therefore, streamwise 
successive segments can be out of phase in their perturbation. Widnall discovered 
strong evidence of the mutual induction instability only for cases when the 
perturbation was 180’ out of phase on successive segments. Segments of the helix 
then paired in a manner similar to the helical pairing instability discussed by 
Pierrehumbert & Widnall (1982) for spatially periodic shear flows. For our case, the 
azimuthal perturbation imposed upon the jet is uniform along the streamwise 
wavelength. Successive segments of the vortex helix of the jet, occurring in 
successive periodic images on the control volume, are then in phase in their 
perturbation. Therefore we do not expect a similar instance of mutual induction 
instability in the helical vortex of the jet under the form of azimuthal perturbation 
considered. 

Widnall documented the long-wavelength instability for values of the number of 
waves per cycle of less than KR, where K is the streemwise wavenumber of the helix 
and R its radius. For our case, the vortex helix has the same streamwise wavenumber 
as the wavelength of the jet within which it occurs. Therefore for the case of 
RIB = 11.3, K is equal to 3. The corrugation imposes a value of 6 waves per cycle onto 
the vortex helix, a value which places the helix of this jet outside the valid region for 
long-wavelength instability to occur. Widnall furthermore explained how the short- 
wavelength instability could be similar to the short-wavelength instability in vortex 
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rings. It was expected that for very short wavelengths, only the influence of 
neighbouring portions of the helix would have large effect. The short-wave 
instability, being a local property of a vortex filament, would then behave similarly 
in both rings and helices. A latter study done on short-wave instability in vortex 
rings (Widnall et al. 1974) suggested, however, that  short-wave instability in the 
vortex ring might be in part caused by the strain induced by the remaining portions 
of the ring. Clearly the strain field of a vortex helix differs from that of a vortex ring. 
Therefore i t  is not entirely clear how well-suited the results from the instability of 
vortex rings are to the vortex helix. Unfortunately, the short-wavelength instability 
falls outside the region of validity of Widnall's helical vortex analysis. 

A similar difficulty occurred in the long-wavelength stability analysis of vortex 
rings (Widnall & Sullivan 1973). The wavelength for instability discovered lay 
outside the wavelengths for which the analysis was considered valid. The analysis 
was then extended (Widnall et al 1974). To our knowledge, a similar study, valid for 
short-wavelength disturbances on helical vortex, has not yet been performed. 
Therefore a thorough quantitative comparison with the necessary parameters for a 
short-wavelength instability is impossible. In  the study of helical vortices, Widnall 
did, however, present the characteristic lengthscale of the short-wavelength vortex 
helix instability. The study also demonstrated how i t  might be applied to the results 
on vortex rings. Following Widnall (1972), the characteristics lengthscale for the 
short-wavelength instability in the helix is its local radius of curvature 

1 + K2R2 
R K 2  ' 

S =  

Then, a measure of helical vortex core size, for use in the results on vortex rings, 
becomes aS/R, where a is the core radius of the helical vortex. For the present 
streamwise wavelength and radius, the core radius used for the evaluation of the 
effective wavenumber for instability in the vortex helix is increased by 9 % over the 
value used for vortex rings of identical core radius. Keeping in mind that the helical 
vortex is continually evolving in the jet, one should again anticipate instability in the 
helical vortex of the R / 6  = 11.3 jet at  some point in the flow evolution, as was found 
in the rings of the equivalent-parameter ring-dominated jet, since the increase in 
measure of core radius in helices is only very slight, and roll-up evolves in a similar 
fashion. However, we expect that as the helical vortex emerges, the necessary 
parameters for its instability occur a t  a slightly different time than they do for the 
ring-like vortices of similar ring-dominated jets. 

3. Summary and conclusions 
Our aim has been a more complete understanding of some of the inviscid 

mechanisms in the three-dimensional evolution of an axisymmetric jet. In earlier 
studies we considered jets whose primary vortical structure was excited by 
axisymmetric perturbation. Within the present study, we have extended this 
analysis by considering the nonlinear, three-dimensional evolution of jets whose 
primary structure are helical in nature. The results of a helically symmetric 
calculation form the basis for our subsequent discussion of helix-dominated jets. By 
including a single helical mode of azimuthal wavenumber 1,  the individuality of ring- 
like vortices under axisymmetric perturbation is replaced by a single vortex of helical 
form, connected by a braid region. Helical symmetry mandates the formation of a 
single-signed sheet-like braid vorticity layer. While the vortex rings that occur under 
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axisymmetric disturbance limit the spanwise extent of the braid vorticity of one sign, 
the aspect ratio of the layer of braid vorticity of one sign in a helix-dominated jet 
tends to an infinite value. 

Primary structure in the form of a helical vortex creates an additional 
circumferential component in the overall strain field. In the jet, the strain field 
exhibits an upstream-downstream asymmetry about the primary vortical structure, 
whether the structure is helical in nature or in the form of a vortex ring. Based on 
the findings of Lin & Corcos for infinite-aspect-ratio braid vorticity regions in the 
mixing layer, the formation of single-signed structures appears likely. By introducing 
an additional perturbation in the azimuthal direction, thereby breaking the helical 
symmetry, a Kelvin-Helmholtz-like instability evolves within the braid region. In 
this way, streamwise braid vortices evolve, which are indeed all of the same sign of 
vorticity. This development of single-signed streamwise braid vortices is in contrast 
to the counter-rotating structures which form in the braid regions of the jet under 
axisymmetric disturbance. Further concentration of the single-signed braid vortices 
occurs due to the extensional strain field set up by the strengthening helix, in the 
same manner as the collapse of the finite-aspect-ratio counter-rotating vortices seen 
in the ring-dominated jet of Martin & Meiburg (1991~)  and described by Lin & 
Corcos. With the additional azimuthal perturbation to the jet, the helix develops 
wavy modulations. The continuing rotation of the helix, in the jet of ratio 
R / 8  = 22.6, does not allow instability in a manner which is similar to the translative 
instability described by Pierrehumbert & Widnall(l982) for periodic shear layers, as 
it prevents the amplitude of the waviness in the helix from growing in the overall 
strain field. By varying the ratio between the amplitude of the helical and radial 
disturbances, the initial form the braid vorticity can be strongly influenced. 
However, we find that the long-time strength of the concentrated braid vortices 
should not depend on the streamwise and azimuthal perturbation amplitudes, but 
rather on the wavenumbers. 

For a jet of RIB = 11.3, we observe the initial, near-exponential growth of the 
amplitude of the helix waviness. As we have seen for ring-dominated jets of decreased 
R / 8 ,  the increase of the momentum thickness increases the initial core radius and 
alters a vortex’s self-induced velocity. In a jet with RIB = 11.3 under axisymmetric 
and additional azimuthal perturbation, we observed a corresponding reduced 
rotation rate and the occurrence of a Widnall-type instability of the rings creating 
large amplitudes in their waviness by the end of simulation. For the helix-dominated 
jet with RIB = 11.3, and with the same additional fivefold corrugation, we again 
initially observe the reduction in rotation of the helical vortex and the near 
exponential growth of its waviness, characteristic of vortex helix instability. 

Future topics of interest include the question of how the helical structures grow in 
the streamwise direction. On this issue, some guidance is provided by the 
experimental study of Browand & Laufer (1975). Further interesting problems are 
posed by the interaction of helical perturbations of different wavenumbers, as well 
as by the evolution of jets simultaneously perturbed by helical and axisymmetric 
waves. A very interesting additional topic concerns the simulation of jets with swirl. 
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